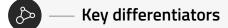


YellowScan Vx15 series.


The long range & high precision UAV LiDAR solution

YellowScan Vx15 is the lightest system integrating the Riegl Mini-VUX.

Ideally suited for high precision surveys such as civil engineering.

Coupled with the DJI M300 it allows over 25min flight time maximizing your survey production.

- ▶ High precision point cloud
- Maximized range
- Calibrated intensity value

W — UAV Integrations

- Multirotor drones
- Helicopter drones

System integration options.

Vx15-100
Scanner:
RIEGL miniVUX-1UAV

Vx15-200
Scanner:
RIEGL miniVUX-2UAV

Vx15-300 NEW Scanner:
RIEGL miniVUX-3UAV

Package includes.

Hardware:

- YellowScan Vx15-100 / 200 / 300
- Rugged pelicase
- Charger and 2 batteries
- GNSS antenna and cable
- 2 USB flash drives
- Documentation

Services:

- > 1-year unlimited technical support
- 1-year warranty
- In-person or online training
- Boresight calibration certificate

✓ Software:

- Applanix POSPac UAV, to post-process GNSS and inertial data for highest accuracy
- YellowScan CloudStation, to generate and visualize your georeferenced point cloud

Optional:

- Stand-alone mounting bracket for DJI M300/600
- Mounting bracket with single Sony α6000 camera for DJI M600
- Mounting bracket with dual Sony α6000 camera for DJI M600
- Mounting bracket with Micasense Altum camera
- Warranty and technical support extensions

- YellowScan LiveStation: the real-time in-flight LiDAR monitoring kit (includes software and 2 radio-modems)
- Strip Adjustment module: a point cloud enhancing toolbox for the CloudStation software
- Terrain module: export classified point clouds from the CloudStation software

Technical specifications.

Precision ^{(1) (3)}	1 cm
Accuracy ^{(2) (3)}	5 cm
Echoes per shot	Up to 5
Laser wavelength	905 nm
GNSS-Inertial solution	Applanix APX-15 UAV

Weight	2.6 kg (5.7 lbs) battery included	
Size	L 35 x W 11 x H 17 cm	
Autonomy	1.5 hours typ.	
Power consumption	25 W	
Operating temperature	-20 to +40 °C	

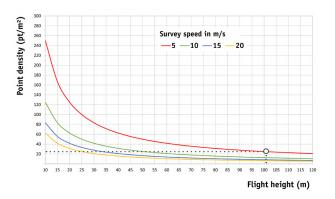
Vx15-100	100 kHz

Shots per second	100k over 360°
Scanner field of view	360°
Operating Flight Altitude AGL natural targets ≥ 20%	100m
Average point density @50m AGL, 5m/s, 90°FOV	50pts/sqm

Vx15-200	100 kHz	200 kHz ^{over 360°}	
Shots per second	100k over 360°	200k over 360°	
Scanner field of view	360°	360°	
Operating Flight Altitude AGL natural targets ≥ 20%	100m	85m	
Average point density @50m AGL, 5m/s, 90°FOV	50pts/sqm	100pts/sqm	

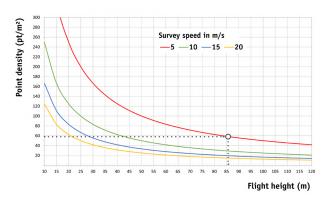
Vx15-300	100 kHz	200 kHz ^{over 360°}	200 kHz $^{\rm over~180}^{\circ}$	300 kHz
Shots per second	100k over 360°	200k over 360°	100k over 180°	100k over 120°
Scanner field of view	360°	360°	180°	120°
Operating Flight Altitude AGL natural targets ≥ 20%	100m	85m	100m	100m
Average point density @50m AGL, 5m/s, 90°FOV	50pts/sqm	100pts/sqm	100pts/sqm	150pts/sqm

 $^{(1) \} Precision, also called \ reproducibility \ or \ repeatability, accounts for the \ variation \ in \ successive \ measurements \ taken \ on \ the \ same \ target.$

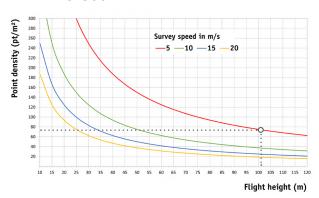

 $[\]ensuremath{\text{(2)}}\ \mbox{Accuracy is the degree of conformity of a measured position to its actual (true) value.}$

⁽³⁾ One σ @ 50 m, nadir.

⁽⁴⁾ Reduced power.

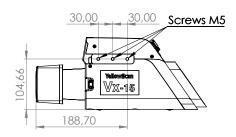

Typical mission parameters.

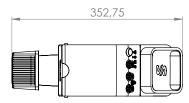
Vx15-100



LIDAR UNIT Vx15-100	FLIGHT SPEED 5m/s	ALTITUDE 100m	POINT DENSITY 25pts/sqm
LIDAR UNIT	FLIGHT SPEED 5m/s	ALTITUDE 85m	POINT DENSITY 60pts/sqm

Vx15-200


Vx15-300


Dimensional drawings.

i Dimensions expressed in millimeters

Side view

Top view

Front view

